

Logger Helper

	Getting Started
	Importing and Setup

	Usage

	The mod Method

	Further Reading

	Logger Helper

Installation

Installing Logger Helper is super simple, you can either use pip:

pip install logger-helper

or you can install it manually after having cloned or downloaded this
repository:

python3 setup.py install

You’re ready to go! Read the Getting Started guide for information on
what to do next!

Getting Started

Please read the Installation section before going any further.

Importing and Setup

Import logging and the logger_helper.LoggerHelper class to get
started:

>>> import logging
>>> import logger_helper

Here, as an example, we’re going to set up and use a simple file handler [https://docs.python.org/3/library/logging.handlers.html#filehandler] to
capture our logs, but you can (and should) configure the logging [https://docs.python.org/3/library/logging.html] module as
you would normally (see the Python documentation on logging configuration [https://docs.python.org/3/howto/logging.html#configuring-logging])
if you’re going to use it in your own application:

>>> logger = logging.getLogger(__name__)
>>> handler = logging.FileHandler('/tmp/my_log.log', 'w')
>>> logger.addHandler(handler)
>>> logger.setLevel(logging.DEBUG)

Now we’ve got a basic logger configured we can create a new instance of the
logger_helper.LoggerHelper class. Pass it the logger we want it to
write to and the level at which it should write to it with:

>>> log = logger_helper.LoggerHelper(
... logging.getLogger(__name__), logging.DEBUG)

That’s it, you’re done! (almost). The only thing that’s left to do from
here is to choose the modules, classes, methods and functions to wrap!

Usage

Once you have the logger configured, classes, methods and functions can all be
wrapped very simply, just use the class instance as a decorator:

>>> @log
>>> class MyClass:
>>> def method_one(self, param):
>>> print('Method one:', param)
>>> return 123
>>>
>>> @log
>>> def my_function(param_1, param_2):
>>> print('Doing something with {} and {}'.format(param_1, param_2))
>>> raise Exception('Something didn\'t work out...')

After you’ve wrapped your classes and functions, you can use them just as you
would normally:

>>> my_class = MyClass()
>>> my_class.method_one('Hi')
Method one: Hi
>>>
>>> try:
... my_function('Blue', 'Green')
... except Exception as ex:
... print('Caught:', ex)
Doing something with Blue and Green
Caught: Something didn't work out...

Now, lets take a look at /tmp/my_log.log (the handler we set up at the
beginning of this tutorial):

cat /tmp/my_log.log

Calling __main__.MyClass.method_one(param = 'Hi')
Returned 123 from __main__.MyClass.method_one
Calling __main__.my_function(param_1 = 'Blue', param_2 = 'Green')
Exception Exception occurred in __main__.my_function, "Something didn't work out..."

Done! (for real this time). That’s how simple it is to get started with
Logger Helper!

The mod Method

There is one other useful feature that Logger Helper provides, the
logger_helper.LoggerHelper.mod() method. When it’s passed a module, it
will wrap all functions and classes within it.

Assuming that we’ve set up our logger and LoggerHelper (as described
above) and you have import my_module in your file, we can then do the
following:

>>> log.mod(my_module) # Remember that `log` is an instance of `logger_helper.LoggerHelper`

You can also pass a list of symbols (classes/functions) that you want to wrap
within your module to limit what gets wrapped:

>>> log.mod(my_module, ['ClassOne', 'some_function'])

Further Reading

Take a look at the logger_helper.LoggerHelper.mod(),
logger_helper.LoggerHelper.cls(), logger_helper.LoggerHelper.meth()
and logger_helper.LoggerHelper.func() docstrings for more information.

Logger Helper

Logger Helper main classes and utility functions.

	
class logger_helper.LoggerHelper(logger, log_level)

	Log calls to class methods and functions.

Create a new helper that writes to a specific logger.

	Parameters:

	
	logger (logging.Logger) – The logger to write to.

	log_level (int) – The log level to log at. This should be one of the
logging.XXXXX constants, for example logging.DEBUG.

	
call_log_format

	str – The format string to use when formatting a
call to a callable. The available tokens are:

	callable - The name of the callable.

	args - The arguments passed to the callable. The format of
the arguments is defined in the argument_format property.

	
argument_format

	str – The format of each argument. The available
tokens are:

	name - The name of the argument.

	value - The value of the argument.

	
argument_separator

	str – The separator to join the arguments
together with.

	
return_log_format

	str – The format to log the return with. The
available tokens are:

	callable - The name of the callable.

	return_value - The return value (after it’s been run
through repr).

	
exception_log_format

	str – The format to log exceptions with. The
available tokens are:

	callable - The name of the callable.

	name - The name of the exception.

	message - The exception message.

	
__call__(obj)

	Wrap the class methods or functions in our decorator.

	Raises:

	TypeError – When the object isn’t a class or function.

	Returns:

	The fully wrapped class or function.

	
cls(cls)

	Wrap a classes methods (that don’t start and end with __).

	Parameters:

	cls – The class to wrap.

	Returns:

	A copy of the given class with all of it’s methods
wrapped.

	Return type:

	cls

	
func(function)

	Wrap a function.

	Parameters:

	function – The function to wrap.

	Returns:

	A wrapped copy of the given function.

	Return type:

	function

	
meth(method)

	Wrap a method belonging to a class.

	Returns:

	A wrapped copy of the fiven method.

	Return type:

	method

	
mod(mod, symbols=None)

	Wrap an entire module’s classes and functions.

	Parameters:

	
	mod (module) – The module to wrap.

	symbols (list) – If this is specified, only the symbols
(classes/functions) listed will be wrapped. Each item in the
list should be a string.

	Returns:

	Nothing is returned, the class is wrapped in place.

	Return type:

	None

	
logger_helper.get_callable_name(clbl)

	Get the fully qualified name of a callable.

	Parameters:

	clbl – The callable to get the name for.

	Returns:

	A string representing the full path to the given callable.

	Return type:

	str

 Python Module Index

 l

 		 	

 		
 l	

 	
 	
 logger_helper	

Index

 _
 | A
 | C
 | E
 | F
 | G
 | L
 | M
 | R

_

 	
 	__call__() (logger_helper.LoggerHelper method)

A

 	
 	argument_format (logger_helper.LoggerHelper attribute)

 	
 	argument_separator (logger_helper.LoggerHelper attribute)

C

 	
 	call_log_format (logger_helper.LoggerHelper attribute)

 	
 	cls() (logger_helper.LoggerHelper method)

E

 	
 	exception_log_format (logger_helper.LoggerHelper attribute)

F

 	
 	func() (logger_helper.LoggerHelper method)

G

 	
 	get_callable_name() (in module logger_helper)

L

 	
 	logger_helper (module)

 	
 	LoggerHelper (class in logger_helper)

M

 	
 	meth() (logger_helper.LoggerHelper method)

 	
 	mod() (logger_helper.LoggerHelper method)

R

 	
 	return_log_format (logger_helper.LoggerHelper attribute)

 nav.xhtml

 Table of Contents

 		
 Logger Helper

 		
 Getting Started

 		
 Importing and Setup

 		
 Usage

 		
 The mod Method

 		
 Further Reading

 		
 Logger Helper

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

